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Interface Hamiltonian with a position-dependent stiffness:
A nonlinear functional renormalization group study

C. J. Boulter
Laboratorium voor Vaste-Stoffysica en Magnetisme, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium

~Received 26 September 1997!

A detailed study of the wetting behavior predicted from an effective interfacial Hamiltonian approach which
allows for a position-dependent stiffness coefficient is given. A nonlinear functional renormalization group
scheme is introduced enabling earlier studies to be extended into general dimensions 1,d<3 while permitting
a semiquantitative numerical analysis. We find that the prediction of Fisher and Jin of a bare critical wetting
transition being driven fluctuation-induced first order can occur for dimensionsd.dc'2.41 while at lowerd
the transition remains critical. Ford.dc first-order wetting is found if the wetting parameterv(T) is less than
a tricritical value v t(T). Importantly in three dimensions numerical analysis revealsv t.v thus clearly
supporting the premise that the wetting transition in this case is indeed first order. We focus especially on
demonstrating the robustness of this result under variation of the stiffness strength and renormalization group
rescaling parameter.@S1063-651X~98!14002-3#

PACS number~s!: 68.45.Gd, 64.60.Fr, 82.65.Dp, 68.10.2m
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I. INTRODUCTION

The study of wetting transitions in systems with sho
range interactions has attracted a great deal of interest
recent years@1–16#. One source of controversy has been
apparent discrepancy in three dimensions between theo
cal predictions@5,6,10#, primarily based on the renormaliza
tion group ~RG!, and Monte Carlo~MC! simulation results
of critical @7# and complete wetting@14#. These discrepancie
have now, to some extent, been accounted for by exten
the model Hamiltonian to include fluctuations near the w
or surface which couple to the fluctuations in the unbind
interface. A detailed discussion can be found in@17,18#.
However, the implication of these analyses is that curr
MC simulations of critical wetting do not probe the fu
asymptotic behavior. In other words, results of the pres
simulations, modeled in slab geometries, cannot be used
direct comparison with theoretical predictions relating to
unbinding of the interface in a semi-infinite system. Indee
recent application of the Ginzburg criterion for the susce
bility x1 applied to models including these ‘‘surface fluctu
tions’’ reveals that crossover from mean-field behavior
curs only for values of the bulk magnetic fieldh&1026

@18,19#, several decades smaller than the values studie
the simulations@7#. Thus we should not expect to investiga
the true asymptotic behavior using current simulation te
niques because such regions in the field cannot be rea
due to technical problems such as critical slowing down
the bulk and of interface fluctuations.

As a result we must presently rely on theoretical pred
tions for our understanding of wetting in a semi-infinite g
ometry. With this in mind we should start by asking perha
the most fundamental question: ‘‘What is the order of t
transition in these systems?’’ The answer to this basic qu
tion is far from clear and it is this issue that we address in
present paper. In particular, we wish to understand wheth
transition which is critical at the bare mean-field level m
become first order when fluctuations are included, as rece
571063-651X/98/57~2!/2062~11!/$15.00
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predicted by Fisher and Jin~FJ! @12,13#—and if so for which
values of external parameters~dimension, temperature, etc!
does this occur? This analysis should be viewed as com
mentary to the ‘‘two-field’’ approach discussed above—
that work~see, for example,@17#! the surface fluctuations ar
shown to be crucial in understanding the MC simulations
do not affect the order of the transition and hence are
directly relevant for the issues we address here. In this pa
we shall argue, on the basis of a nonlinear functional R
study, that ind53 for temperatures above the rougheni
temperature the bare critical wetting transitionis driven first
order assuming currently accepted values for the bulk co
lation length, etc. Conversely ind52 the transitionalways
remains critical so that the presence of a position-depen
stiffness coefficient plays no role, at least at the level of
order of the transition. At an intermediate dimensiondc
'2.41 there is a crossover between these two behaviors
to an additional fixed-point potential entering the analysis
preliminary account of some of this work was given in@20#,
however, the details of the extended RG scheme are
sented here along with a careful check on the robustnes
our central conclusions.

The remainder of this paper is arranged as follows. In
next section the standard effective interface Hamiltonian
the improved Fisher-Jin model incorporating a positio
dependent stiffness coefficient are introduced and RG pre
tions based on these models are discussed. In Sec. II
recall some details of the nonlinear functional RG and int
duce a modified approximation scheme which allows for
presence of a position-dependent stiffness coefficient in
effective Hamiltonian. The numerical results obtained fro
this functional RG are described in Sec. IV both for a fix
rescaling parameter and in the infinitesimal rescaling lim
Finally in Sec. V a summary and discussion of the ma
results are provided.

II. EFFECTIVE HAMILTONIAN MODELS

We begin by recalling some pertinent details of the cr
cal wetting transition and the effective Hamiltonian mode
2062 © 1998 The American Physical Society
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57 2063INTERFACE HAMILTONIAN WITH A POSITION- . . .
used to describe it. Consider a wall or substrate in the pl
z50 bounding ad-dimensional semi-infinite volume (y,z
.0). In this half space we imagine there is a medium at~or
very close to! bulk coexistence between two phases,a andb
say. We further assert that far away from the wall~i.e., z
→`! thea phase is stable while the wall exerts a preferen
for the b phase through the action of short-range inter
tions, such that a wetting layer of phaseb exists close to the
wall. An a-b interface separating this wetting layer from th
bulk phase is located at a distancel (y) from the wall. We
assume that there exists a subcritical wetting temperatureTW
such that as the temperatureT is increased toTW the mean
thickness of the wetting layer diverges continuously—t
interface delocalization transition is denoted critical wettin
Alternatively, if the wetting layer thickness diverges disco
tinuously we have a first-order wetting transition.

In this paper we restrict our attention to the case of sh
range fluid-fluid forces~henceforth we considera and b to
be fluid phases! in addition to the short-range wall-fluid in
teraction discussed above. In this case the upper critica
mension isd53 @4# so that to study wetting phenomena
d<3 we generally have to go beyond mean-field~MF!
theory using renormalization group techniques. These
approaches are based on an effective interfacial Hamilto
H@ l (y)# which is a functional of the wetting layer thicknes
In particular, it has been typical to assume the simple in
facial or capillary-wavemodel @3#

H@ l #5E dd21y$ 1
2 S0@“ l ~y!#21V„l ~y!…%, ~2.1!

whereS05S0(T,...) is theinterfacial tension or stiffness o
a freea-b interface~and is thus independent ofl ! andV( l ) is
the wall-interface binding potential which takes the form

V~ l !5h̄l 1v1e2k l1v2e22k l1••• . ~2.2!

Here k[1/jb is the inverse bulk correlation length of th
wetting ~b! phase andh̄ is a measure of the~chemical po-
tential! deviation from bulk two-phase coexistence.

A. Linear RG results

In d53 linear RG analyses@3,5# of critical wetting
~h̄50, T→TW

2! based on Eq.~2.1! have predicted remarkabl
nonuniversal behavior for both critical amplitudes and cr
cal exponents with results depending sensitively on the
mensionlesswetting parameterv defined as

v~T;d53!5
kBT

4pS0jb
2 . ~2.3!

Three regimes are predicted with, for example, the expon
n i , which measures the divergence of the transverse co
lation lengthj i along the edge of the wetting layer, bein
given by

n i5H ~12v!21,

~A22Av!22,
`,

0<v, 1
2

1
2 ,v,2

v.2

~2.4!
e
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where the final regime implies an exponentially fast div
gence. Within the first two regimes (v,2) the fluctuations
do not renormalize the wetting temperature soTW5TW

MF

where TW
MF is the mean-field wetting temperature. Forv

.2, TW is predicted to be reduced below its MF value.

B. Nonlinear RG results

The predictions described above rest on a linearization
the exact functional RG. As a result these analyses are
able to consider a true hard wall but instead employ a sof
finite wall @such that the interface can actually fluctuatebe-
hind the wall: l (y),0#. A comprehensive study by Lip
owsky and Fisher~LF! @6# overcomes this problem an
yields semiquantitative results in dimensionsd<3. Their
analysis is based on a nonlinear functional RG~NFRG!
scheme which is an approximate nonperturbative techniq
Some of the technical details concerning the NFRG are gi
in Sec. III where a modified scheme is introduced. Here
briefly discuss the study of LF for the model~2.1! which
consists of renormalizing the bare potentialV(0)( l ) via suc-
cessive applications of a recursion relationV(N11)( l )
5R@V(N)( l )# @21#. Thus the critical behavior is governed b
the fixed-point potentials,V* ( l ) say, which remain invarian
underR.

The most interesting phenomena occur for the spec
scaling regime in which both exponents and phase bou
aries are nontrivial. This so-calledstrong-fluctuation regime
~SFL! is characterized by microscopic interactions satisfy

V~ l !l t→0 as l→`, ~2.5!

with

t[
2~d21!

~32d!
~2.6!

(1,d<3). Ford,3 a binding potential which decays fast
than any power, as is the case for the systems with sh
range interactions which we are focussing on, is alwa
within the SFL. In this regime, for fixedd,3, LF found two
nontrivial fixed-point potentials, namely,~i! a critical poten-
tial Vc* ( l ) with an attractive tail for largel , representing the
bound interface and~ii ! a purely repulsive potentialV0* ( l )
.0 corresponding to the unbound interface. These poten
are shown schematically in Fig. 1. The surprising feature
these fixed points is that on the approach tod53 they do not
coalesce with the standard Gaussian fixed point as would
expected from analogy with typical bulk critical phenomen
Rather, ford→32 the two fixed-point potentials mutually
annihilate leaving behind a line of ‘‘drifting fixed points’’—
i.e., potentials whoseshapeis not affected by an application
of the recursion operatorR but whoselocationdrifts steadily
under successive iterations. By examining which fixed po
an initial bare potential flows towards underR, LF were able
to locate numerically the wetting transition phase bound
for the range of dimensions 2<d<3. In d53 the general
features of the phase boundary agree with those determ
from the linear RG analyses—i.e., the wetting temperatur
unchanged forv,2 but is reduced below its MF value fo
v.2. The critical exponentn i is determined via an eigen
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2064 57C. J. BOULTER
perturbation analysis and ind52 is found to be in remark-
able agreement with the known exact resultn i52 @22#. Ex-
trapolation tod53 reveals thatn i diverges to the SFL result
n i5` @regime 3 of Eq.~2.4!#.

David and Leibler~DL! @11# have since shown that th
picture of fixed-point potentials is even richer than first p
dicted. These authors found that on approachingd53 nu-
merous multicritical fixed points appear successively in pa
(Vm* ,Wm* ), m52,3, . . . ~retaining the notation of DL!. The
first pairV2* ( l ) andW2* ( l ) appear fort'4.8 ~corresponding
to d'2.41! and each has a maximum and two minima~in-
cluding the one atl 5`!. In generalVm* ( l ) andWm* ( l ) pos-
sess m11 extrema including that at l 5`. For
t→`(d→32)V0* , Vc* , and all theVm* (m52,3, . . . )merge
into the drifting fixed point discussed above. TheWm* also
attain the form of the drifting fixed point at largel while for
small l the picture is less clear~see@11#!. However, it should
be stressed that these extra fixed points do not enter
phase boundary analysis of LF, hence their results are u
fected.

C. The Fisher-Jin model

The above analyses all take the standard capillary-w
Hamiltonian~2.1! as their starting point. This model has r
cently been questioned by Fisher and Jin, who have sys
atically derived an effective interfacial Hamiltonian startin
from the more microscopic Landau-Ginzburg-Wilso
~LGW! model

HLGW@m#5E dy$@ 1
2 ~“m!21f~m!#dz1f1„m~z50!…%.

~2.7!

Here m„r 5(y,z)… is the bulk order parameter andf(m) is
the bulk free-energy density which is a double-well functi
with two equal minima at two-phase coexistence. The s
face potentialf1 is modeled by the truncated expansi
f1(m)52h1m2gm2/2 whereh1 andg are the surface field
and surface coupling enhancement, respectively. An in
face Hamiltonian can be formally derived from Eq.~2.7! via

FIG. 1. Schematic representation of the two fixed-point bind
potentials relevant for mapping out the phase diagram of
capillary-wave model. The purely repulsive potentialV0* ( l ) corre-
sponds to the unbound interface while the critical potentialVc* ( l )
represents a bound interface.
-
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the introduction of a constraint which specifies restrictio
on the accessible microstates ofHLGW that are compatible
with the given interfacial configurationz5 l (y). ThusH@ l #
is defined through

exp$2H@ l ~y!#%[Tr8„exp$2HLGW@m~r !#%…, ~2.8!

where the prime denotes that the trace is taken only o
bulk states which satisfy the constraint.

In practice a saddle-point approximation for the trace
Eq. ~2.8! is used. In this way FJ have shown that Eq.~2.1!
should be replaced by the modified effective interfa
Hamiltonian

H@ l #5E dd21y$ 1
2 S~ l !~“ l !21V~ l !%. ~2.9!

The first difference between their model and the earlier o
is that the coefficientsvn in the expansion forV( l ) @see Eq.
~2.2!# are no longerl independent but are found to be pol
nomials in l of ordern. Inclusion of these terms within the
framework of the linear RG theory does not lead to a
significant change in the predictions for critical wetting@23#.
The second and more dramatic difference is the presence
position-dependent stiffness coefficientreplacing the free in-
terface stiffnessS0 . In particular, FJ observeS( l )5S0
1DS( l ) whereDS( l )→0 as l→` and is given by an ex-
pansion similar to that ofV( l ), namely,

DS~ l ;T,...!5~s101s11k l !e2k l1„s201s21k l

1s22~k l !2
…e22k l1••• . ~2.10!

At MF level close to critical wetting the dominant contribu
tion is found to bes21k le22k l where s21 takes a negative
nonvanishing value.

The position-dependent stiffness cannot be incorpora
into the existing NFRG so FJ restricted their analysis of E
~2.9! to an extended linear RG study ind53. Although the
analysis is more complicated due to a coupling between
RG flows ofDS (t) andV(t), whereet>1 is the spatial res-
caling factor, their results can be written in a surprising
simple form. In particular, they find that the binding potent
V(t)( l ) renormalizes exactly as in theS( l )5S0 case except
with the initial bare potentialV(0)( l ) being replaced by the
effective potential

Veff~ l !5V~0!~ l !1
vL2

2k2 ~12e22t!DS~0!~ l !, ~2.11!

whereL is a nonuniversal momentum cutoff~see later!. For
large t this simply amounts to changingV(0) by a term pro-
portional to DS (0). For values ofv less than a tricritical
value v t , FJ find that this leads to the negative domina
contribution toDS destabilizing the critical wetting transi
tion and leading instead to a weakly first-order transition. F
v.v t the transition remains critical. The value ofv t was
estimated to be in the region 0.5,v t,1.0 while a recent
computation ofv(T) for the simple cubic Ising model pre
dicts v50.7860.09 for relevant temperatures@24#. Thus it
is certainly possible that ind53 the transition is fluctuation-
induced first order although a more accurate determinatio
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57 2065INTERFACE HAMILTONIAN WITH A POSITION- . . .
v t is required prior to making firm predictions. Thestiffness
instability mechanismdescribed above can occur only
there is some region in phase space where first-order we
is possible so this mechanism cannot persist in thed52 limit
where it is known from exact results that the wetting tran
tion is always critical@22#. In order to gain improved quan
titative results ind53 and better understand the picture f
2,d,3 we now develop an extended NFRG suitable
studying Eq.~2.9!.

III. THE NONLINEAR FUNCTIONAL RG

In this section we describe an extension of the appro
mate recursion relations developed by Wilson in the con
of bulk critical phenomena@25# and LF for interfacial phe-
nomena@6,26# which will allow us to investigate Eq.~2.9!.
Recall that the main disadvantage of the Wilson scheme
applied to bulk criticality is that it unavoidably forces th
critical point decay exponenth to vanish @27# instead of
attaining its proper~nonzero! value. In contrast the RG ap
proach is particularly well suited to the study of unbindi
phenomena because in this case the exponenth is identically
equal to zero@6#. Thus we have considerable confidence
the reliability of the NFRG scheme when applied to wetti
phenomena.

A. Formalism and approximations

Implicit in the definition of the effective interface mode
~2.1! and ~2.9! is a momentum cutoffL ~or equivalently a
short-distance cutoffL21! so that in Fourier space the com
ponents ofl (y) only have wave numbers satisfyinguku,L.
In order to justify ignoring possible overhangs, bubbles, a
higher-order terms the cutoff is required to satisfyLd21

!(S0 /kBT), corresponding to length scales much grea
than the bulk correlation length@1#. The renormalization
group procedure consists of performing a partial trace in
partition function over small scale fluctuations,l .(y) say,
with wave numbers in the rangeL/b,uku,L whereb.1 is
an arbitrary rescaling factor. The partial trace overl .(y)
yields a new, intermediate Hamiltonian with momentum c
off L/b. We must then make the scale transformation app
priate for RG studies of unbinding transitions@6#,

y→y85y/b, l→ l 85 l /bz, ~3.1!

wherez5(32d)/2 is the roughness exponent. This rescal
ensures that the momentum cutoff of the intermediate Ha
tonian is returned to its original value allowing the process
be repeated iteratively.

The trace over short-wavelength fluctuations descri
above cannot be performed exactly and so the introductio
a number of approximations is required. Since the sche
presented in this paper is somewhat different from ear
analyses it is appropriate at this stage to discuss the app
mations involved and in particular how these differ from t
previous studies. One starts, as in the Wilson scheme
assuming thatl .(y) can be expanded thus

l .~y!5(
n

AV l n
.En~y!, ~3.2!
ng

-
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where theEn(y) are a complete set of suitably chosen eige
functions or wave packets which are localized in both r
and momentum space. In momentum space this localiza
simply refers to the restriction of Fourier modes to the sh
L/b,uku,L while in real space theEn are assumed to be
localized in real-space cells of volumeV(b). The volume is
chosen to be as small as possible while still satisfying
‘‘uncertainty relation’’ @28#

V~b!E
L/b

L dd21k

~2p!d21 51. ~3.3!

We then make the following approximations.
~i! First we ignore the overlap between wave packets

that in any real-space cell there is only one nonzeroEn(y).
In particular, it is convenient to define@28#

VS0

kBT E dd21k

~2p!d21 k2Ẽn~k!Ẽm~2k!5
dnm

ã 2 , ~3.4!

where Ẽn(k) is the Fourier transform ofEn(y), dnm is the
Kronecker delta, andã is a length scale which at this stag
remains arbitrary.

~ii ! Secondly, we assume that the large scale fluctuati
l ,(y)[ l (y)2 l .(y) may be considered to be constant with
each real-space cell, thus we denote the value ofl ,(y)
within cell n by l n

, . Note that this step is fundamentally
‘‘bookkeeping’’ procedure in the calculation, important flu
tuations inl ,(y) should be accounted for by later applic
tions of the iterative procedure. Hence we are not, for
ample, inferring that@“ l ,(y)# is zero within each cell with
singular behavior at the boundary between cells. In fact
supplement the above assumption with the analogous
proximation that@“ l ,(y)# is also constant within each rea
space cell. This addition is essential in order to incorpor
the position-dependent stiffness coefficient and is in
spirit of the original scheme.

~iii ! Finally it is necessary to make some simplifying a
sumptions about the eigenfunctions. We retain the traditio
approximation that the magnitude ofEn(y) is constant within
each real-space cell. TheEn(y) are orthogonal tol ,(y) since
they have no cross support in momentum space—this le
to the result that ifEn is nonzero in a given cell then
uEn(y)u'V21/2 with En being positive in one half of the cel
and negative in the other half@27#. In addition we ignore
variations inu“En(y)u which is again required to extend th
NFRG to study Eq.~2.9!. Note that the value ofu“En(y)u is
fixed by Eq.~3.4! which for n5m can be written

E dd21yu“En~y!u25kBT/VS0ã 2. ~3.5!

Hence if we writeB̄5u“Enu thenB̄ is simply related to the
arbitrary length scaleã introduced earlier via VB̄2

5kBT/VS0ã 2.
The approximations we have introduced are seen to

simple extensions of the earlier schemes and do not in
duce any new arbitrary length scales into the analysis. F
thermore, these approximations are not in conflict with
analyses of LF and DL; hence if the modified scheme
applied to the traditional capillary-wave model~2.1!,
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2066 57C. J. BOULTER
results identical to those of the earlier authors are obtain
Indeed because the extra approximations do not affect
calculation if DS( l )[0 those original results must also b
recovered from the calculations described below in the li
of DS( l )→0; l .

B. Recursion relations and flow equations

With the division of the fluctuating field into long
wavelength and short-wavelength parts,l 5 l ,1 l . described
above, the effective Hamiltonian~2.9! can conveniently be
written

H@ l ,1 l .#5H0@ l ,#1H0@ l .#1HI@ l ,1 l .#, ~3.6!

where

H0@ l #5E dd21y 1
2 S0~“ l !2, ~3.7!

and

HI@ l #5E dd21y$ 1
2 DS~ l !~“ l !21V~ l !%. ~3.8!

With this notation we define the intermediate, unresca
renormalized HamiltonianH8@ l ,# say, via the partial trace
over short-wavelength fluctuations

exp$2bH8@ l ,#%5
1

N0
exp$2bH0@ l ,#%E Dl .

3exp$2b~H0@ l .#1HI@ l ,1 l .# !%,

~3.9!

where b51/kBT and the normalization factorN0
[*Dl .exp$2bH0@l

.#%.
Using the expansion~3.2! we can convert the functiona

integral into a multidimensional integral over the comp
nents l n

. , *Dl .•••5*Pndln
.••• , where we have ignored

constant factors which vanish when a ratio is taken. Furth
more, using the approximations discussed above we ob
the simplifications

bH0@ l .#5
1

2 (
n

S l n
.

ã D 2

~3.10!

and

bHI@ l ,1 l .#5(
n

H 1

2ñ
g~ l n

, ,l n
.!1F ~“ l n

,!2

4ñ

1
l n

.2

4ã 2S0
Gh~ l n

, ,l n
.!J . ~3.11!

Here the scaleñ[ñ(b)51/bV(b) and the functionsg andh
are given by

g~x,y!5V~x1y!1V~x2y!, ~3.12!

h~x,y!5DS~x1y!1DS~x2y!. ~3.13!
d.
he

it

,

-

r-
in

Substituting these results into Eq.~3.9! and performing the
appropriate integrations yieldsH8@ l ,#. To complete the
renormalization group step we then rescale according to
~3.1!. In this way we find that the initial potentialV(0)( l )
[V( l ) and stiffness contribution DS (0)( l )[DS( l )
are renormalized via successive applications
V(N11)( l )5RV@V(N)( l ),DS (N)( l )# and DS (N)11( l )
5RDS@V(N)( l ),DS (N)( l )# where@21#

RV[2 ñbd21 lnF E
2`

` dl8

~2p!1/2ã
E~ l ,l 8!G ~3.14!

and

RDS[
*2`

` dl8h~bzl ,l 8!E~ l ,l 8!

2*2`
` dl9E~ l ,l 9!

, ~3.15!

where for brevity we have introduced the functionE given
by

E~x,y!5expH 2
y2

2ã 22
1

2ñ
g~bzx,y!2

y2

4S0ã 2 h~bzx,y!J .

~3.16!

The RG described above displays many similarities with
earlier analysis of LF as should be expected since the ea
results must be recovered whenDS[0. We therefore antici-
pate, as verified below, that the ‘‘arbitrary’’ length scaleã
should be fixed to the same value derived by LF,

ã2~b!5
kBT

S0
E

L/b

L dd21k

~2p!d21k2 . ~3.17!

However, the inclusion of theDS( l ) term leads to funda-
mental changes in the final results, with most notably the
flow of the binding potential being intrinsically linked to tha
of DS as embodied in Eq.~3.14!. Further, Eq.~3.15! reveals
a subtle interplay between the flows of the two functio
with the explicit dependence ofDS (N11)( l ) on V(N)( l ).

In the infinitesimal rescaling limitb5edt (dt→0) with
ã 2 given by Eq.~3.17! the recursion relations~3.14! and
~3.15! yield coupled flow equations

]V

]t
5~d21!V1z l

]V

] l
1S0L2vjb

2 lnF11
1

S0L2

3H ]2V

] l 2 1L2DSJ G , ~3.18!

and

]DS

]t
5z l

]DS

] l
1vjb

2 ]2DS

] l 2 F11
1

S0L2

3H ]2V

] l 2 1L2DSJ G21

, ~3.19!

wherev[v(d) is the generalization to arbitrary dimensio
of the wetting parameter introduced in Eq.~2.3!,
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v~d!5
kBT

4pS0jb
2G@~d21!/2#

S L2

4p D ~d23!/2

. ~3.20!

C. Linear limit

In this subsection we briefly confirm that the nonline
scheme described above is exact to leading order in both
binding potential and position-dependent stiffness contri
tion. First we note that the linearized recursion relation
DS( l ) which follows from Eq.~3.15! is

DS~N11!~ l !5E
2`

` dl8

~2p!1/2ã
e2 l 82/2ã2

DS~N!~bzl 2 l 8!.

~3.21!

This agrees precisely with the linearized recursion relat
derived by FJ provided we make the identification~3.17! for
ã 2. The resulting flow equation, which is exact at this ord
is

]DS

]t
5z l

]DS

] l
1vjb

2 ]2DS

] l 2 , ~3.22!

which also follows directly from linearizing Eq.~3.19!.
When working at this order the flow ofDS( l ) is independent
of the binding potential; as we have seen above this is not
case at higher orders.

For V( l ) the linearized recursion relation arising from E
~3.14! is

V~N11!~ l !5bd21E
2`

` dl8

~2p!1/2ã
e2 l 82/2ã2H V~N!~bzl 2 l 8!

1
vjb

2L2

~d21!
@12b12d#~ l 8/ã!2DS~N!~bzl 2 l 8!J ,

~3.23!

where we have made use of the relationñ/2S0[@1
2b12d#vjb

2L2/(d21). The expression in curly bracke
differs slightly from that found by FJ where the fact
( l 8/ã)2 is absent@cf. Eq. ~2.11! where d53 and b5et#.
Importantly this difference is of no consequence in the d
vation of the flow equation where we setb5edt and look for
terms ofO(dt) on the right-hand side of Eq.~3.23!. Noting

@12b12d#/(d21)5O(dt) and *dl8e2 l 82/2ã2
@( l 8/ã)2

21#DS(bjl 2 l 8)/(2p)1/2ã5O(dt) confirms that the ex-
pressions are equivalent in the infinitesimal rescaling lim
Thus using Eq.~3.23! we derive the exact result

]V

]t
5~d21!V1z l

]V

] l
1vjb

2H ]2V

] l 2 1L2DSJ ,

~3.24!

for the linearized flow equation, consistent both with FJ a
Eq. ~3.18!.

D. Hard-wall restrictions

In addition to including nonlinear terms, a key feature
the NFRG compared with linear RG studies is the ability
incorporate a true hard wallV( l )5` for l ,0 ~see Sec. II B!.
This ensures that the fluctuating fieldl (y) always remains in
r
he
-
r

n

,

e

i-

t.

d

f

front of the wall as is physically desirable. Here we deri
the appropriate recursion relations when a hard wall
present and examine its relevance forDS( l ). First we note
from Eq. ~3.14! that if we include a hard wall in our initia
bare potential it remains fixed atl 50 under iterations of
RV . Thus

V~N!~ l !5` for l ,0, ~3.25!

for all N if V(0)( l ,0)5`. Furthermore, forl .0 we ob-
serve

V~N11!~ l !52 ñbd21 lnF S 2

p D 1/2E
0

bz l dl8

ã
E~N!~ l ,l 8!G ,

~3.26!

where we have used the symmetryE( l ,2 l 8)5E( l ,l 8) in
order to restrict the integral tol 8.0. In Eq.~3.26! E(N) refers
to the functionE with potential V[V(N)( l ) and stiffness
DS[DS (N)( l ).

Similarly in the presence of a hard wall the stiffness co
tribution recursion relation~3.15! reduces to

DS~N11!~ l !5
*0

bz ldl8h~N!~bzl ,l 8!E~N!~ l ,l 8!

2*0
bz ldl9E~N!~ l ,l 9!

, ~3.27!

for l .0 whereh(N) can be read from Eq.~3.13! replacing
DS by DS (N). It follows from these last two relations that i
calculating V(N11)( l ) and DS (N11)( l ) for l .0 we need
never specifyDS (N)( l ) with l ,0. Thus if we assume a hard
wall initial potential V(0)( l ,0)5` then the form of
DS (0)( l ,0) is completely irrelevant and can most simply
assumed zero.

IV. NUMERICAL STUDY

In this section we provide a detailed numerical stu
based on the nonlinear recursion relations derived above.
shall show that both critical and first-order transitions a
found and give realistic estimates for the location of the
critical point separating the two behaviors. The bulk of t
calculations described here have been performed with fi
rescaling factorb52. However, we conclude by considerin
in a numerical manner, the effect on these results of
proaching the infinitesimal rescaling limitb→11.

A. Fixed points

The critical phenomena of our model will be governed
the fixed points„V* ( l ),DS* ( l )… of Eqs.~3.14! and~3.15!. It
is convenient to rewrite the flow equations~3.18! and~3.19!
using the dimensionless variables

z[ lA2z/A,

U~z![2zV~Az/A2z!/B, ~4.1!

S~z!5A2L2DS~Az/A2z!/B,

whereA andB areb-independent parameters defined by
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A[F ã2~b!~32d!

b32d21 G1/2

5jbA2v~d! ~4.2!

and

B[
ñ~b!~d21!

12b12d 5
2Ld21kBT

~4p!~d21!/2G@~d21!/2#
. ~4.3!

In this case the flow equations simplify to

]U

]t
5zS tU1z

]U

]z
1 lnF11

]2U

]z2 1SG D ~4.4!

and

]S

]t
5zS z

]S

]z
1

]2S

]z2 F11
]2U

]z2 1SG21D , ~4.5!

wheret is as given in Eq.~2.5! and recallz5(32d)/2.
With this notation we are interested in fixed-point pa

„U* (z),S* (z)… which satisfy ]U* /]t5]S* /]t50 along
with the boundary conditions of a hard wall@U* (z,0)
5`# and U* and S* decaying to zero for largez. The
appropriately rescaled fixed-point potentials of DL, d
cussed in Sec. II B, in combination with the trivial stiffne
contributionS(z)[0 are clearly fixed points of the system
In general, extending the procedure described by Lipow
@29# we search for fixed points starting at smallz with the
local conditionsU* (z)'s1 /zt, S* (z)'s2 , where thes i
are constants, and integrate forward. The tails ofU* (z) and
S* (z) arising for largez can be determined by linearizin
Eqs.~4.4! and ~4.5!. Thus we find

S* ~z!5rsE
z

`

dz8 exp~2z82/2! ~4.6!

and

U* ~z!5r1Het21~z!1
r2

zt S 11 (
N51

`
~t12N21!!

N! ~t21!!

1

2z2ND
2

1

t
S* ~z! ~4.7!

for large z, where Het21(z) is the Hermite polynomial of
order t21 andrs ,r1 ,r2 are arbitrary constants. For fixed
point potentials in the strong-fluctuation regime we m
choose initial parameters which yieldr250. A preliminary
study employing this procedure suggests that a family
fixed-point pairs exist, parametrized bys2 . However, we
find that the magnitude ofS* (z) is only non-negligible in the
region whereU* (z) is so large that it is effectively infinite
i.e., forz→0. Thus typically one finds a fixed-point potenti
picture indistinguishable from that of DL.

B. Dimensionless variables

For the calculations described below it is convenient
follow the lead of LF and absorb the scale factorsã(b) and
ñ(b) into our functions. Thus, using a notation similar to th
above but now for fixedb.1, we define
-

y

t

f

o

t

z[ l /&ã~b!,

U ~N!~z![V~N!@&ã~b!z#/ ñ~b!, ~4.8!

S~N!~z![DS~N!@&ã~b!z#/S0 .

In this wayz, U, andS are dimensionless variables and t
rescaled recursion relations have no explicit dependence
the cutoffL. In particular, we obtain

U ~N11!~z!52bd21 lnF 2

Ap
E

0

`

dz8E~z,z8!G ~4.9!

for the rescaled binding potential, and

S~N11!~z!5
*0

`dz8@S~N!~bzz1z8!1S~N!~bzz2z8!#E~z,z8!

2*0
`dz9E~z,z9!

~4.10!

for the stiffness contribution. HereE is given by

E~z,z8!5e2z822@U~N!~bzz1z8!1U~N!~bzz2z8!#/2

3e2z82@S~N!~bzz1z8!1S~N!~bzz2z8!#/2. ~4.11!

In both recursion relations~4.9! and ~4.10! we can replace
the upper limit of the integrals bybzz upon assuming a hard
wall potential.

C. Phase diagram

For systems with purely short-ranged forces it suffices
consider a bare potential@6#

U ~0!~z!5 H 2we2sz1e22sz, z.0
`, z,0 ~4.12!

wherew is a measure of the deviation from the mean-fie
wetting temperaturew}TW

MF2T, and s.0. For z.0 addi-
tional terms with coefficients which vanish at the MF wettin
temperature may be included and the coefficient of thee22sz

term need not be set to unity but can be included as
additional parameter in the model. These modifications w
alter the precise location of phase boundaries but do no
fect the critical phenomena discussed below. For the b
position-dependent stiffness contribution we write@13#

S~0!~z!5 H 2qsze22sz, z.0
0, z,0 ~4.13!

where the parameterq is the stiffness strength. Recall that
the form ofS(0)(z,0) is arbitrary, given the hard-wall con
tribution to the potential. Again, forz.0 further terms such
ase2sz with a coefficient which vanishes atT5TW

MF may be
included @12# but these do not affect the essential physi
The advantage of modelingU (0) andS(0) by Eqs.~4.12! and
~4.13! is that the results of LF are recovered exactly in t
limit q→0.

To determine the phase boundary we numerically iter
the potential and stiffness contribution using the recurs
relations~4.9! and ~4.10! with fixed b52, starting with the
bare functions~4.12! and ~4.13!. In this way we find a two-
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dimensional separatrix which divides the three-dimensio
parameter space (w,s,q) into ‘‘bound’’ and ‘‘unbound’’ re-
gions. The intersections of this separatrix with planes
fixed q are shown in Fig. 2 for bothq50 ~corresponding to
LF! andq52 for a range of dimensions. Unlike the earli
study one finds that three fixed-point potentials are impor
in mapping out phase space. In addition toUc* (z) andU0* (z)
@using the rescaling~4.8!# the attractive manifold of the po
tential U2* (z) @corresponding toV2* ( l ) of DL# is also rel-
evant. For fixedd let wc(s,q) represent the separatrix. Fo
w,wc the attractive part ofU (N) decays to zero eventuall
being mapped toU0* (z) which governs the completely un
bound phase. Forw.wc the minimum of U (N) becomes
deeper and deeper, representing the bound phase in w
the interfacial separation remains finite. Forw5wc the po-
tential is governed by one of the multicritical fixed poin
Uc* (z) or U2* (z). For d52.6 these three fixed-point poten
tials are shown in Fig. 3. Crossing the phase boundary f
theUc* to U0* region corresponds to critical wetting since t
minimum of U(z) diverges continuously to infinity asU(z)
transforms continuously fromUc* to U0* ~as assumed hap
pens when crossing between different RG fixed-point
gions!. Similarly the transition between theU2* andU0* re-
gions is first-order wetting since the minimum ofU(z)
jumps discontinuously from a finite value to infinity asU(z)
transforms continuously fromU2* to U0* . The potentialU0*
is easily found numerically since it is completely stable@6#.
Hence if we start in any region of phase space satisfyingw
,wc we eventually iterate to the fixed point. The seco
fixed pointUc* is a little more difficult to reach because it ha
one relevant~unstable! perturbation so we must choose sta
ing parameters within that region of the planew5wc corre-
sponding to critical wetting. The final fixed point is partic

FIG. 2. Phase boundaries in the (w,s) plane for the dimension-
ally reduced bare potential and position-dependent stiffness co
butions given by Eqs.~4.12! and ~4.13!, respectively, calculated
with b52. Recallw measures the deviation from the mean-fie
wetting temperaturew}TW

MF2T. The various phase boundaries a
labeled by dimensiond and stiffness strengthq. The region above
a boundary line corresponds to the ‘‘bound’’ phase while that be
represents the unbound or delocalized interface. Solid lines de
critical loci while dashed lines correspond to first-order loci; tr
ritical points separating the two regimes are shown by thick do
al

f

nt

ich

m

-

larly difficult to determine becauseU2* has two relevant
perturbations. Thus only with starting parameters in
plane w5wc on the line dividing critical and first-order
transitions do we eventually flow to the fixed point. Th
general topology of phase space for binding potentials in
strong-fluctuation regime is shown schematically in Fig. 4

Returning to the phase diagram we note that for fix
q,0 no first-order transitions are found since the stiffne
contribution strengthens rather than destabilizes the crit
wetting transition. Similarly, recall ford&2.41 that the fixed
point U2* is not present so once again only critical wettin
can occur. Hence ind52 it is the scaling index of the only
relevant perturbation atUc* (z) which is important for deter-
mining the critical exponents, thus as with LF one findsn i

5(0.4960.01)21 in excellent agreement with the exa
valuen i52 @22#. For largerd*2.41 first-order phase bound

ri-

te

.

FIG. 3. The three fixed-point potentialsU0* (z), Uc* (z), and
U2* (z) for dimensiond52.6 and rescaling factorb52 @using the
dimensionless variables~4.8!#. The corresponding stiffness contr
butions S* (z) which make up the fixed-point pairs are all ze
~within the precision of our numerical calculations! in the region
shown.

FIG. 4. Schematic representation of the topology of phase sp
when the three fixed-point potentialsU0* , Uc* , and U2* are all
relevant. The separatrixwc divides the regions of phase space co
responding to bound and unbound interfaces while the thick lin
a line of tricritical points separating first-order and critical wettin
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2070 57C. J. BOULTER
aries are possible and occur~for fixed q.0! for small values
of s. For larges the transition remains critical; a tricritica
point st separates these two regions. It is found, as also s
in Fig. 2, that at fixedd the region of the phase diagram
which the interface remains bound increases withq. We also
note that ford53, q52.0 the value ofs at the tricritical
point st'2.83 ~corresponding tov t'2.89! is much higher
than earlier estimates by FJ.

D. The stiffness instability in d53

Recall that the FJ stiffness instability mechanism p
poses that ind53 the bare critical wetting transition coul
be driven fluctuation-induced first order~see Sec. II C!. We
have seen above how this mechanism may arise in gen
and in this subsection we provide a semiquantitative anal
to locate more accurately the tricritical pointv t in three di-
mensions for relevant temperatures. To this end we m
provide an estimate for the stiffness strengthq in d53. This
is achieved by first noting from the analysis of FJ that, n
glecting terms of O(TW

MF2T), V( l );v20e
22k l1••• and

DS( l );s21k le22k l1••• . Furthermore, we observe that th
simple relation

s21'22v20 ~4.14!

appears to be generally true at mean-field level. We shall
go into detail here but just note that this relation holds
actly for the integral and simple crossing constraint choi
for the collective coordinatel @12,13#, and for a more gen-
eralized crossing constraint definition ofl @30#. From the
rescaling~4.8! the bare potentialU (0)(z) corresponds to the
choice v205 ñ(b) and hence using Eq.~4.13! one should
chooseq'2ñ(b)/S0 . Substituting forñ(b) and recalling
d53 yields

q'kBTL2~121/b2!/2pS0 . ~4.15!

Consequently, for rescaling factorb52 we have
q'3v(T)jb

2L2/2 @31#, wherev(T) is the wetting paramete
defined earlier.

For the simple-cubic Ising model~appropriate to simula-
tions! v(T) has been estimated by Fisher and Wen@24# to be
in the range 0.70,v(T),0.87 for 0.55,T/Tc,1.0 while
the wetting temperature lies in the range 0.6,TW /Tc
,0.93. It is reasonable to assume a lattice cutoffL'p/a
where a is the simple-cubic lattice spacing. Using this
combination with estimates by Evans, Hoyle, and Parry@32#
for the true bulk correlation length yieldsL2jb

2'1.3 at T
50.6Tc increasing monotonically toL2jb

2'10.0 at T
50.93Tc . Thus sensible estimates ofq lie in the range
1.41,q,12.0. In particular, we find that the appropriate e
timate forq increases with temperature so that, for examp
we predict q(T50.6Tc)'1.41,q(T50.7Tc)'2.46, q(T
50.8Tc)'4.41, andq(T50.9Tc)'9.96 for the choiceb
52. If we takeq50.9, considerably lower than the abov
estimates, we already find that the tricritical poi
v t(5st

2/4 ln b)'2.07, again significantly larger than earli
predictions. Similarly forq51.41 we findv t'2.49 while as
mentioned above forq52.0, v t'2.89. As the value ofq
increases the tricritical point location also moves to hig
en

-

ral
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-

ot
-
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-
,

r

values. Clearly these quoted values ofv t will depend to
some extent on the approximations used above, for exam
on the choice of cutoffL. Furthermore, we have not at th
stage considered how significant a role the choice of fix
b52 plays ~see below!. However, given thatv t is around
three times the value of current estimates forv(T), we can
predict at this stage that the mean-field critical wetting tra
sition is actually fluctuation-induced first order.

E. The rescaling parameterb and the infinitesimal
rescaling limit

Now we focus on how relevant the choice of rescali
factorb is for our quantitative results and provide some ge
eral results for how the location of the tricritical point varie
with b, d, andq. Recall that the NFRG is an approxima
technique being exact only to first order in the binding p
tential and position-dependent stiffness contribution. Th
the NFRG scheme does not possess the semigroup pro
which would ensure the results would be insensitive to
choice of b. Hence ideally we would like to consider th
infinitesimal rescaling limitb511, however, this is not pos
sible using the numerical scheme described above. To o
come this problem we have studied a range of rescaling
rameters 1.125<b<5 numerically and extrapolate ou
results to the infinitesimal limit.

We focus here on the location of the tricritical pointst in
this limit. Our first observation from this analysis is that th
st vanish asb→1 in a logarithmic manner. In particular, w
find st}Aln b. This behavior is not surprising and is in fa
essential if the general scenario presented above is not t
fundamentally changed. This is the case because the ph
cally interesting quantity is notst but v t which is related to
st by

v t5
st

2

4 ln b@11O~e ln b!#
, ~4.16!

wheree532d. Thus if st decayed to zero any faster tha
O(Aln b) as b→1 then the tricritical pointv t→0 in the
infinitesimal limit and so the fluctuation-induced first-ord
wetting would be effectively lost. Likewise, ifst decays to
zero more slowly thanO(Aln b) ~or st /→0 asb→1! then in
the infinitesimal limit v t→` and the bare critical wetting
transition would always be driven first order. Hence on
with the observedAln b vanishing canv t remain at a finite
nonzero value.

The remainingb dependence of thest is found to be in
excellent agreement with a simple linear fit in 1/b. This is
shown in Fig. 5 whenq50.9 for the range of dimension
2.60,d,2.84. Results at higher dimensions are fully co
sistent with this simple fit although fewer data have be
gathered due to increased calculation times. In general
find that the location of the tricritical point can be written

st'S~q,e!Aln bS 12
B

b D , ~4.17!

where B50.49 and S(q,e) is a b-independent function
which we determine below. This reveals a quite significa
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effect uponv t in taking the infinitesimal limit since extrapo
lating and using Eq.~4.16! yields

v t~b511!'0.46v t~b52!. ~4.18!

Hence the results above forv t calculated usingb52 are
predicted to be reduced to a little under half their given v
ues, in the infinitesimal limit. Nevertheless the resulting
critical values are still comfortably larger than the corr
sponding predictions forv(T) so that our conclusions
remain unaltered. However, this large change in going fr
b52 to b51 does demonstrate how careful we must be
extracting quantitative results using the NFRG.

We conclude by providing some details of the functi
S(q,e) introduced in Eq.~4.17!. From our numerical studie
we find that this function can most easily be written in t
form

S~q,e!5qf 1~e! f 2~e!, ~4.19!

where f 1(e) and f 2(e) are dimension-dependent function
with f 1 given by

f 1~e!'0.20610.50e, ~4.20!

while f 2 can be written as a simple expansion ine,

f 2~e!' (
n50

4

f 2
~n!en, ~4.21!

with f 2
(0)53.90, f 2

(1)5218.69,f 2
(2)557.68,f 2

(3)598.08, and
f 2

(4)559.42. This expansion is valid for those dimensions
which a tricritical point exists, i.e.,e&0.59. The weak de-
pendence ofst on q implied by Eq.~4.20! reveals that our
results are robust to uncertainties in our choice of stiffn
strength. Recall that our approximations for the cutoffL and
wetting parameterv are contained within the estimate forq.
Thus our quoted values ofq, although reasonable, are clear

FIG. 5. Location of the tricritical pointst ~rescaled byAln b!
plotted as a function of 1/b for q50.9 and a range of dimensions.
linear fit to each data set is given. Where error bars are not sh
the error lies within the size of the symbol. Note that upon extra
lating we find that all the lines have a common point of intersect
on thest50 axis at the location 1/b'2.04.
l-
-
-

n

r

s

only approximate. However, using Eq.~4.20! close tod53
(e50) reveals that even if we letq vary by 650%, say,
then the resulting tricritical point locationst varies by less
than 614%. Hence even in the worst possible scenario
both b andq we confidently predictv t.v(T) and thus ex-
pect a first-order wetting transition.

V. DISCUSSION AND CONCLUSIONS

We have studied the effect of a position-dependent s
ness contributionDS( l ) on the critical behavior related to a
unbinding or wetting transition. In particular, we have intr
duced a modified functional renormalization group sche
which allows a nonlinear analysis of effective Hamiltonia
models containing nonzeroDS( l ). The resulting flow equa-
tions, which are exact at linear order inDS( l ) and the bind-
ing potentialV( l ), reveal a delicate coupling between th
flows of V andDS.

In the strong-fluctuation regime the unbinding transiti
is governed by three nontrivial fixed points leading to t
possibility of both critical and first-order transitions. Speci
cally, first-order transitions become possible for spatial
mensionsd*2.41. This differs significantly from the case o
a position-independent stiffness coefficient when only cr
cal transitions are found for alld.

In contrast to the earlier linear RG analysis, our approa
allows results on the location and order of the wetting tra
sition to be determined with semiquantitative accuracy~these
have typically been computed with rescaling factorb52!.
We have further considered the approach to the infinitesi
rescaling limit in a numerical fashion in order to quantit
tively understand the effect of this parameter on our resu
In each case, for temperatures 0.6,TW /Tc,0.93 appropri-
ate for comparison with simulations, we confidently pred
that ind53 the bare critical wetting transition is fluctuation
induced first order. These results are shown to be rob
under large variations in the stiffness strength.

Recall that the linear RG analysis of Jin and Fisher@13#
predicted that the first-order transition ind53 would be very
weak and thus may be extremely difficult to observe in sim
lations. We have not addressed the issue of the strengt
the transition in this paper but this topic should be cons
ered in future work. However, we note that because of
drifting nature of the fixed points in the approach tod53 it
seems likely that in this limit the first-order transition wi
occur only for very large values of the interface separatiol
~with l increasing continuously up to that point!. Thus we
also anticipate a weakly first-order transition. A more an
lytical approach would be welcome but since this should
based on the coupled nonlinear flow equations signific
progress may prove difficult.
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