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Interface Hamiltonian with a position-dependent stiffness:
A nonlinear functional renormalization group study
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A detailed study of the wetting behavior predicted from an effective interfacial Hamiltonian approach which
allows for a position-dependent stiffness coefficient is given. A nonlinear functional renormalization group
scheme is introduced enabling earlier studies to be extended into general dimerstha8 While permitting
a semiquantitative numerical analysis. We find that the prediction of Fisher and Jin of a bare critical wetting
transition being driven fluctuation-induced first order can occur for dimensiord.~2.41 while at lowerd
the transition remains critical. For>d, first-order wetting is found if the wetting paramete(T) is less than
a tricritical value w(T). Importantly in three dimensions numerical analysis reveals o thus clearly
supporting the premise that the wetting transition in this case is indeed first order. We focus especially on
demonstrating the robustness of this result under variation of the stiffness strength and renormalization group
rescaling parametefS1063-651X%98)14002-3

PACS numbe(s): 68.45.Gd, 64.60.Fr, 82.65.Dp, 68.10n

I. INTRODUCTION predicted by Fisher and Ji{irJ [12,13—and if so for which
values of external parametef@imension, temperature, etc.
The study of wetting transitions in systems with short-does this occur? This analysis should be viewed as comple-

range interactions has attracted a great deal of interest ovEfentary to the “two-field” approach discussed above—in

recent year§1—16. One source of controversy has been anthat work(see, for examplé,17]) the surface fluctuations are
hown to be crucial in understanding the MC simulations but

apparen_t o_llscrepancy m_thre_e dimensions between th_eoretzo not affect the order of the transition and hence are not
gal predictiond5,6,10, primarily based on the r_enormallza- directly relevant for the issues we address here. In this paper
tion group(RG), and Monte CarldMC) simulation results \ye shall argue, on the basis of a nonlinear functional RG
of critical [7] and complete wettinflL4]. These discrepancies study, that ind=3 for temperatures above the roughening
have now, to some extent, been accounted for by extendingmperature the bare critical wetting transitisrdriven first

the model Hamiltonian to include fluctuations near the wallorder assuming currently accepted values for the bulk corre-
or surface which couple to the fluctuations in the unbindinglation length, etc. Conversely id=2 the transitionalways
interface. A detailed discussion can be found[iv,1§. remains critical so that the presence of a position-dependent
However, the implication of these analyses is that currenstiffness coefficient plays no role, at least at the level of the
MC simulations of critical wetting do not probe the full order of the transition. At an intermediate dimensidn
asymptotic behavior. In other words, results of the present=2.41 there is a crossover between these two behaviors due
simulations, modeled in slab geometries, cannot be used fd@ an additional fixed-point potential entering the analysis. A
direct comparison with theoretical predictions relating to thepreliminary account of some of this work was given 20],
unbinding of the interface in a semi-infinite system. Indeed dowever, the details of the extended RG scheme are pre-
recent application of the Ginzburg criterion for the suscepti-Sented here along with a careful check on the robustness of
bility x; applied to models including these “surface fluctua- OUr central conclusions.

tions” reveals that crossover from mean-field behavior oc- 1€ remainder of this paper is arranged as follows. In the
curs only for values of the bulk magnetic fiehi< 10~ next section the standard effective interface Hamiltonian and

[18,19, several decades smaller than the values studied i € |mprove(_1 Flsher-Jln_ F“Ode' Incorporating & position-
the simulation$7]. Thus we should not expect to investigate .ependent stiffness coefficient are mtyoduced and RG predic-
the true asymptotic behavior using current simulation techlions based on t_hese models_ are dlscu§sed. In Sec.. Il we
nigues because such regions in the field cannot be reachéﬁca” someld.etalls of th.e nqnllnear functlor]al RG and intro-
due to technical problems such as critical slowing down induce a modified approxmatlon scheme which a".OV.VS fqr the
the bulk and of interface fluctuations. presence of a pos_ltlon-dependent_ stiffness coefﬂqent in the
As a result we must presently rely on theoretical predic_effectlve Hamiltonian. The numerical results obtained from
tions for our understanding of wetting in a semi-infinite ge-th'S fu_nctlonal RG are de;cnbeq In S_ec.. IV both for a f|.xe.d
ometry. With this in mind we should start by asking perhaps"afsc"’“'n.g parameter and in the |nf|n!teS|m§I rescaling "”.‘"-
the most fundamental question: “What is the order of the':'naIIy in Sec V a summary and discussion of the main
transition in these systems?” The answer to this basic que§—eSUItS are provided.
tion is far from clear and it is this issue that we address in the
present paper. In particular, we wish to understand whether a
transition which is critical at the bare mean-field level may We begin by recalling some pertinent details of the criti-

become first order when fluctuations are included, as recentlyal wetting transition and the effective Hamiltonian models

Il. EFFECTIVE HAMILTONIAN MODELS
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used to describe it. Consider a wall or substrate in the planehere the final regime implies an exponentially fast diver-
z=0 bounding ad-dimensional semi-infinite volumey(z  gence. Within the first two regimess& 2) the fluctuations
>0). In this half space we imagine there is a mediunfoat do not renormalize the wetting temperature Bg= T
very close t¢ bulk coexistence between two phasesnd8  where T)i7 is the mean-field wetting temperature. Fer

say. We further assert that far away from the wak.,z  >2 T, is predicted to be reduced below its MF value.
— ) the @ phase is stable while the wall exerts a preference

for the B phase through the action of short-range interac-
tions, such that a wetting layer of phg8exists close to the
wall. An a-3 interface separating this wetting layer from the ~ The predictions described above rest on a linearization of
bulk phase is located at a distankg) from the wall. We the exact functional RG. As a result these analyses are un-
assume that there exists a subcritical wetting temperdiyre able to consider a true hard wall but instead employ a soft or
such that as the temperatuFeis increased tdly, the mean finite wall [such that the interface can actually fluctuhge
thickness of the wetting layer diverges continuously—thishind the wall: I(y)<0]. A comprehensive study by Lip-
interface delocalization transition is denoted critical wetting.0wsky and Fisher(LF) [6] overcomes this problem and
Alternatively, if the wetting layer thickness diverges discon-Yields semiquantitative results in dimensiods<3. Their
tinuously we have a first-order wetting transition. analysis is based on a nonlinear functional RE&FRG)

In this paper we restrict our attention to the case of shortscheme which is an approximate nonperturbative technique.
range fluid-fluid forceghenceforth we considex and3to ~ Some of the technical details concerning the NFRG are given
be fluid phasesin addition to the short-range wall-fluid in- in Sec. Il where a modified scheme is introduced. Here we
teraction discussed above. In this case the upper critical dpriefly discuss the study of LF for the modé2.1) which
mension isd=3 [4] so that to study wetting phenomena in consists of renormalizing the bare potentdP)(l) via suc-
d<3 we generally have to go beyond mean-fiédF)  cessive applications of a recursion relatiof™*1)(1)
theory using renormalization group techniques. These RG RIVN(1)] [21]. Thus the critical behavior is governed by
approaches are based on an effective interfacial Hamiltoniathe fixed-point potentials/* (1) say, which remain invariant
H[1(y)] which is a functional of the wetting layer thickness. underR.

In particular, it has been typical to assume the simple inter- The most interesting phenomena occur for the specific
facial or capillary-wavemodel[3] scaling regime in which both exponents and phase bound-
aries are nontrivial. This so-callestrong-fluctuation regime

(SFL) is characterized by microscopic interactions satisfying

B. Nonlinear RG results

HI= [ @y s VI TPEvae), @

V(I)I™—0 asl—oo, (2.5
where2 ;=2 (T,...) is theinterfacial tension or stiffness of with
a freea-B interface(and is thus independent bfandV(l) is
the wall-interface binding potential which takes the form 2(d—1)
— T=— (2.6
V()=hl+v,e ' +v,e 2+ . 2.2 (3—d)

Here k=1/&, is the inverse bulk correlation length of the (1<d=3). Ford<3 a binding potential which decays faster

wetting (8) phase and is a measure of théchemical po- than any power, as is the case for the systems with short-
tentia) deviation from bulk two-phase coexistence. range interactions which we are focussing on, is always
within the SFL. In this regime, for fixed<3, LF found two

nontrivial fixed-point potentials, namel{i) a critical poten-

tial VX (1) with an attractive tail for largé, representing the
_In d=3 linear RG analyse$3,5] of critical wetting  bound interface andii) a purely repulsive potentiaVg (l)
(h=0,T—Ty) based on Eq2.1) have predicted remarkable >0 corresponding to the unbound interface. These potentials
nonuniversal behavior for both critical amplitudes and criti-are shown schematically in Fig. 1. The surprising feature of
cal exponents with results depending sensitively on the dithese fixed points is that on the approaclite3 they do not

A. Linear RG results

mensionlessvetting parametew defined as coalesce with the standard Gaussian fixed point as would be
expected from analogy with typical bulk critical phenomena.
o(T:d=3)= keT 2.3 Rather, ford—3~ the two fixed-point potentials mutually
' 4772053' annihilate leaving behind a line of “drifting fixed points”—

i.e., potentials whosshapeis not affected by an application
Three regimes are predicted with, for example, the exponerﬁf the recursion operatd® but whosdocationdrifts steadily
v,, which measures the divergence of the transverse corr¢inder successive iterations. By examining which fixed point
lation length&, along the edge of the wetting layer, being an initial bare potential flows towards under LF were able

given by to locate numerically the wetting transition phase boundary
for the range of dimensions<2d<3. In d=3 the general
(1-w)~* O<w<i features of the phase boundary agree with those determined
', from the linear RG analyses—i.e., the wetting temperature is
V= (V2—w) 2, ;<w<2 (2.4 unchanged fow<2 but is reduced below its MF value for
o}

w>2 w>2. The critical exponeny, is determined via an eigen-
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the introduction of a constraint which specifies restrictions
on the accessible microstates tdf g, that are compatible
with the given interfacial configuration=1(y). ThusHJI]

is defined through

V(1) exp{ —H[I(y)}=Tr"(exp{ —HewIm(N1}), (2.8

V() where the prime denotes that the trace is taken only over
bulk states which satisfy the constraint.

In practice a saddle-point approximation for the trace in
\/ l Eq. (2.8 is used. In this way FJ have shown that E2.1)
should be replaced by the modified effective interface

Hamiltonian

FIG. 1. Schematic representation of the two fixed-point binding H[|]=f dO Iy {33 ()(VI)2+V()}. (2.9
potentials relevant for mapping out the phase diagram of the
capillary-wave model. The purely repulsive potent¥gl(l) corre-
sponds to the unbound interface while the critical potenfia(l)
represents a bound interface.

The first difference between their model and the earlier one
is that the coefficients,, in the expansion fo¥(l) [see Eq.
(2.2)] are no longet independent but are found to be poly-
nomials inl of ordern. Inclusion of these terms within the
framework of the linear RG theory does not lead to any
significant change in the predictions for critical wettii&3].

perturbation analysis and ith=2 is found to be in remark-
able agreement with the known exact resyi:2 [22]. Ex-

trapolation tod =3 reveals thay, diverges to the SFL result, g second and more dramatic difference is the presence of a

= [regime 3 of Eq(2.4)]. , position-dependent stiffness coefficiegplacing the free in-
David and Leibler(DL) [11] have since shown that the eiface sfiffnessS,. In particular, FJ observé (1)=3,

picture of fixed-point potentials is even richer than first Pré-L AS(1) whereAS(1)—0 asl— and is given by an ex-

dicted. Thes_e fa\.utho_rs founq that on approacrqng3 nu- é:)ansion similar to that o¥/(1), namely,
merous multicritical fixed points appear successively in pair

(VE, W), m=23, ... (retaining the notation of DL The AS(I;T,...)=(S1g+ Syikl ) e+ (Sy+ Spil
first pairV3 (1) andWs; (1) appear forr~4.8 (corresponding Ny
to d~2.41) and each has a maximum and two minifia +s(kl))e T (2.10

cluding the one at=). In generalVy,(1) andW;,(l) pos-
sess m+1 extrema including that atl=o«. For
7—oo(d—37)V§, Vi, and all theVy, (m=2,3, ... )merge nonvanishing value

into the drifting fixed point discussed above. THg, also The position-dependent stiffness cannot be incorporated
attain the form of the drifting fixed point at lardewhile for  jnto the existing NFRG so FJ restricted their analysis of Eg.
smalll the picture is less clease_e[ll]). However, it should (2 9) t0 an extended linear RG study &= 3. Although the
phase boundary analysis of LF, hence their results are unagg flows of AS® andVv® wheree!=1 is the spatial res-
fected. caling factor, their results can be written in a surprisingly
simple form. In particular, they find that the binding potential
C. The Fisher-Jin model V(1) renormalizes exactly as in th(1)=3, case except

The above analyses all take the standard capillary-wav¥/th the initial bare potentia/(®)(1) being replaced by the
Hamiltonian(2.1) as their starting point. This model has re- ffective potential

At MF level close to critical wetting the dominant contribu-
tion is found to bes,;xle 2! wheres,, takes a negative

cently been questioned by Fisher and Jin, who have system- A2

atically derived an effective interfacial Hamiltonian starting Ver(1)=VO (1) + w_2 (1—e 2HA3 (1), (2.1
from the more microscopic Landau-Ginzburg-Wilson 2k

(LGW) model

whereA is a nonuniversal momentum cutdffee later. For
B N ) B larget this simply amounts to changing® by a term pro-
HLGw[m]—f dy{[2(Vm)“+ ¢(m)]dz+ ¢, (M(z=0))}. portional to AS(9). For values ofw less than a tricritical
(2.7  value wy, FJ find that this leads to the negative dominant
contribution toAY, destabilizing the critical wetting transi-
Here m(r=(y,z)) is the bulk order parameter anrt{m) is  tion and leading instead to a weakly first-order transition. For
the bulk free-energy density which is a double-well functionw> w; the transition remains critical. The value ef was
with two equal minima at two-phase coexistence. The surestimated to be in the region Gfw,<<1.0 while a recent
face potential¢; is modeled by the truncated expansioncomputation ofw(T) for the simple cubic Ising model pre-
¢1(m)=—h;m—gm?/2 whereh; andg are the surface field dicts w=0.78+0.09 for relevant temperatur¢24]. Thus it
and surface coupling enhancement, respectively. An interis certainly possible that id= 3 the transition is fluctuation-
face Hamiltonian can be formally derived from Eg.7) via  induced first order although a more accurate determination of
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w; 1S required prior to making firm predictions. Tkéffness  where theE,(y) are a complete set of suitably chosen eigen-
instability mechanisndescribed above can occur only if functions or wave packets which are localized in both real
there is some region in phase space where first-order wettirgnd momentum space. In momentum space this localization
is possible so this mechanism cannot persist irdthe limit ~ simply refers to the restriction of Fourier modes to the shell
where it is known from exact results that the wetting transi-A/b<|k| <A while in real space th&, are assumed to be
tion is always critica[22]. In order to gain improved quan- localized in real-space cells of volunfg(b). The volume is
titative results ind=3 and better understand the picture for chosen to be as small as possible while still satisfying the
2<d<3 we now develop an extended NFRG suitable for“uncertainty relation” [28]

studying Eq.(2.9).

A ddflk
Q(b) W_—l =1 (3.3)
ll. THE NONLINEAR FUNCTIONAL RG Alb \eTm

In this section we describe an extension of the approxiWe then make the following approximations.
mate recursion relations developed by Wilson in the context (i) First we ignore the overlap between wave packets so
of bulk critical phenomen§25] and LF for interfacial phe- that in any real-space cell there is only one nonZgxty).

nomena[6,26] which will allow us to investigate Eg2.9). In particular, it is convenient to defif@8]

Recall that the main disadvantage of the Wilson scheme as i1

applied to bulk criticality is that it unavoidably forces the 02 d® -k E (OB (= K) = Snm 3.4
critical point decay exponeng to vanish[27] instead of keT J (2m)9°1 (OEm(—l)=77, (34

attaining its propefnonzer9 value. In contrast the RG ap- _

proach is particularly well suited to the study of unbindingwhere E,(k) is the Fourier transform oE,(y), énm is the

phenomena because in this case the exponéntdentically — Kronecker delta, an@ is a length scale which at this stage

equal to zerd6]. Thus we have considerable confidence inremains arbitrary.

the reliability of the NFRG scheme when applied to wetting (ii) Secondly, we assume that the large scale fluctuations

phenomena. I=(y)=I(y)—1~(y) may be considered to be constant within
each real-space cell, thus we denote the valud <df)

A. Formalism and approximations within cell n by I, . Note that this step is fundamentally a

“bookkeeping” procedure in the calculation, important fluc-

Implicit in the definition of the effective interface models {4tions inl <(y) should be accounted for by later applica-
(2. and(2.9) is a momentum cutoff\ (or equivalently &  tjong of the iterative procedure. Hence we are not, for ex-

short-distance cutofA ~?) so that in Fourier space the com- ample, inferring thaf VI<(y)] is zero within each cell with
ponents ofl(y) only have wave numbers satisfyifif <A.  gingular behavior at the boundary between cells. In fact we
In order to justify ignoring possible overhangs, bu.bblesl, anGypplement the above assumption with the analogous ap-
higher-order terms the cutoff is required to satisty proximation tha{ V1<(y)] is also constant within each real-
<(20/kgT), corresponding to length scales much greateispace cell. This addition is essential in order to incorporate
than the bulk correlation lengthl]. The renormalization he position-dependent stiffness coefficient and is in the
group procedure consists of performing a partial trace in th%pirit of the original scheme.

pgrtition function over small scale fluctuatiors;(y) say, (iii) Finally it is necessary to make some simplifying as-
with wave numbers in the range/b<|k| <A whereb>11is  gymptions about the eigenfunctions. We retain the traditional
an arbitrary rescaling factor. The partial trace oV&(y)  approximation that the magnitude Bf(y) is constant within
yields a new, intermediate Hamiltonian with momentum cut-q5cp real-space cell. THE,(y) are orthogonal td=(y) since

off A/b. We must then make the scale transformation approghey have no cross support in momentum space—this leads
priate for RG studies of unbinding transitiof, to the result that ifE, is nonzero in a given cell then

(3.1) |E.(y)|=Q~ Y2 with E, being positive in one half of the cell
and negative in the other hdl27]. In addition we ignore
variations in|VE,(y)| which is again required to extend the

where/=(3—d)/2 is the roughness exponent. This rescaling,\“:RG to study Eq(2.9). Note that the value diVE, (y)| is
ensures that the momentum cutoff of the intermediate Hamilg, . by Eq.(3.4) which for n=m can be written A

tonian is returned to its original value allowing the process to
be repeated iteratively.

The trace over short-wavelength fluctuations described j d?"ly|VEL(y)|*=ksT/QZ 02 2. (3.5
above cannot be performed exactly and so the introduction of

a number of approximations is required. Since the schemggnce if we writeB_=|VEn| thenB is simply related to the

presenteq n this paper 1s so_mewhat d'ff.efem from ear“e[alrbitrary length scaled introduced earlier viaQB?
analyses it is appropriate at this stage to discuss the approxi-y /(s 3 2
B 0 .

y—y'=ylb, 1-1"=1/bf,

mations involved and in particular how these differ from the
previous studies. One starts, as in the Wilson scheme, bé(i
assuming that~(y) can be expanded thus

The approximations we have introduced are seen to be
mple extensions of the earlier schemes and do not intro-
duce any new arbitrary length scales into the analysis. Fur-
thermore, these approximations are not in conflict with the
1> (v) = QIZEL(Y), 32 analyses of LF and DL; hence if the modified scheme is

) zn: Vo nEnly) 32 applied to the traditional capillary-wave modé€PR.1),
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results identical to those of the earlier authors are obtainedubstituting these results into E.9) and performing the
Indeed because the extra approximations do not affect thappropriate integrations yieldsl’[1<]. To complete the

calculation if A% (1)=0 those original results must also be renormalization group step we then rescale according to Eq.
recovered from the calculations described below in the limit(3.1). In this way we find that the initial potential®)(l)

of A3 (1)—0VI. =V(l) and stiffness contribution AS©(1)=A3(l)
are renormalized via successive applications of
B. Recursion relations and flow equations VD) =R VN (1), AN (1] and AN

= (N) (N)
With the division of the fluctuating field into long- Ras[VI(1),AXT(1)] where[21]

wavelength and short-wavelength patts|=+1~ described

above, the effective Hamiltoniaf®.9) can conveniently be Ry=-7b%"11In er %F’ E(l,17) (3.149
written —= (2m)7 @

HI=+171=Ho[l <1+ Ho[ "1+ H[IS+17], (3.6 and

where [ dl"h(bl,IME(,I")
N T = (313
Ho[']Zf d?ly33o(V1?, 3.7
where for brevity we have introduced the functiBngiven
and by
y? 1 y?
H,[I1]= f di-Iy{2AS()(VD)2+V(1)}. (3.9 E(X-Y)=9XP{ — =7 5 9(bXY) -~ L h(béx,y)] :

(3.1
With this notation we define the intermediate, unrescaled,
renormalized Hamiltoniamd'[1 <] say, via the partial trace The RG described above displays many similarities with the
over short-wavelength fluctuations earlier analysis of LF as should be expected since the earlier
results must be recovered whaix,=0. We therefore antici-

o 1 - - pate, as verified below, that the “arbitrary” length scae
exp{—BH'[I7]}= No exp{— BHo| ]}f Dl should be fixed to the same value derived by LF,
xexp{— B(Ho[I7]+H [I=+17 D}, . kgT (A d9k
a‘(b)=—<— f —— T3 3.1
(3.9 (b) So Jam (2m4 K2 (317

where B=1/kgT and the normalization factorNo  However, the inclusion of tha3(l) term leads to funda-

= DI~ exp{— BHJI"T}. mental changes in the final results, with most notably the RG
Using the expansiol3.2) we can convert the functional flow of the binding potential being intrinsically linked to that

integral into a multidimensional integral over the compo-of AS, as embodied in Eq3.14. Further, Eq(3.15 reveals

nentsl;, [DI”---=[I,dl;---, where we have ignored a subtle interplay between the flows of the two functions

constant factors which vanish when a ratio is taken. Furtherwith the explicit dependence @SN *(1) on VN(I).

more, using the approximations discussed above we obtain |n the infinitesimal rescaling limib=e® (5t—0) with

the simplifications a 2 given by EQ.(3.17) the recursion relation$3.14) and

(3.19 yield coupled flow equations

1 > I\2
prliima e 19 ﬂ—(d—l)v+ Iﬂ+2 A2wE Il 1+
N fhgr 2ol ed; S A2
and
il A%AY 3.1
H=+171=3 | =iz | Vo) T | o
B I[ + ]_n Eg(n'n) 47
and
>2
n < >
+m}h(|n 'ln)]' (3.1 gAY gAY PAX 1
0 =/l +wéf — | 1+ 5
at al al SoA
Here the scale=7v(b)=1/8Q(b) and the functiong andh 2y .
are given by 2
X WJFA AEH , (3.19

g(x,y)=V(x+y)+V(x—y), (3.12
wherew=w(d) is the generalization to arbitrary dimension
h(x,y)=A3(Xx+y)+ A3 (X—Y). (3.13 of the wetting parameter introduced in EG.3),
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w(d)=

kgT (A2)<d—3>/2 front of the wall as is physically desirable. Here we derive
2 — (3.20 the appropriate recursion relations when a hard wall is

Amogpl(d=1)12) present and examine its relevance XX (). First we note

_ o from Eq. (3.14 that if we include a hard wall in our initial

C. Linear limit bare potential it remains fixed &t=0 under iterations of

In this subsection we briefly confirm that the nonlinearRy. Thus
scheme described above is exact to leading order in both the

binding potential and position-dependent stiffness contribu- V()= for I<0, (3.29
tion. First we note that the linearized recursion relation for
A3,(1) which follows from Eq.(3.15 is for all N if V(O(1<0)=c. Furthermore, fol>0 we ob-
serve
“ dl’ 12552
(N+1) (1) = S N) (e
AS(NF (|)—f_wme aAE( (b§| 1"). - 1 2 1/2 e dI’ .
VN ()= —-Tbd L |n| | — f —E< (L1,
(3.2) ™ 0
This agrees precisely with the linearized recursion relation (3.2

derived by FJ provided we make the identificati@l?) for

=5 ! _ . / where we have used the symmetg(l,—1")=E(l,l’) in
a“. The resulting flow equation, which is exact at this order

'order to restrict the integral 16>0. In Eq.(3.26 EM) refers

is to the functionE with potential V=V(N(I) and stiffness
GAS  GAS PAS AX=A3M(]). _
p =/l E +wép e (3.22 Similarly in the presence of a hard wall the stiffness con-

tribution recursion relatiori3.15 reduces to

which also follows directly from linearizing Eq(3.19. ;
When working at this order the flow @f3, (1) is independent NeD) S AN 41 EMN (L)
of the binding potential; as we have seen above this is not the A% (= 2fbg'dl”E(N)(I ")

case at higher orders. 0 :

G E))ri\s/(l) the linearized recursion relation arising from Eq. for 1>0 whereh™ can be read from Eq(3.13 replacing

A3 by ASM)_ |t follows from these last two relations that in

. (3.27

dl’ 22 calculating VN (1) and AS(N*3(1) for >0 we need
VINED()=p?™ lf me_ e vV (b4 1) never specifin 3 (N (1) with | <0. Thus if we assume a hard-
wall initial potential V(O(I<0)=% then the form of

wEA A30)(1<0) is completely irrelevant and can most simply be
+( )[1 b= 9(1"/a)2AS N (bél—1") ¢, assumed zero.
(323 IV. NUMERICAL STUDY
where we have made use of the relation23,=[1 In this section we provide a detailed numerical study

—b'"YwégA%/(d—1). The expression in curly brackets pased on the nonlinear recursion relations derived above. We
differs slightly from that found by FJ where the factor sha|l show that both critical and first-order transitions are
(I'/2)% is absent[cf. Eq. (2.1) whered=3 andb=e'l.  found and give realistic estimates for the location of the tri-
Importantly this difference is of no consequence in the deriritical point separating the two behaviors. The bulk of the
vation of the flow equation where we set-e” and look for  cajculations described here have been performed with fixed
terms ofO(4t) on the right-hand side of Eq3.23. Noting  rescaling factob=2. However, we conclude by considering,
[1-b9)/(d—1)=0(st) and [dlI’e"?Z[(1'/3)2 in a numerical manner, the effect on these results of ap-
—1]A3(bél1—1")/(27)Y2a=0(ét) confirms that the ex- proaching the infinitesimal rescaling lirmit—1".

pressions are equivalent in the infinitesimal rescaling limit.

Thus using Eq(3.23 we derive the exact result A. Fixed points
V v (92V ) The critical phenomena of our model will be governed by
op —d=DV+il —- +w§b +ASAL Y, the fixed pointgV* (1),AX* (1)) of Egs.(3.14 and(3.15. It

(3.24 is convenient to rewrite the flow equatio(®&18 and(3.19
using the dimensionless variables
for the linearized flow equation, consistent both with FJ and

Eq. (3.19. z=I\2¢IA,
D. Hard-wall restrictions U(z)=2¢V(AZ \/2—§)/B, 4.1
In addition to including nonlinear terms, a key feature of
the NFRG compared with linear RG studies is the ability to S(z)=A2A2A3.(AZ\20)1B,

incorporate a true hard wall(I) =< for | <0 (see Sec. Il B
This ensures that the fluctuating figid/) always remains in whereA andB areb-independent parameters defined by
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a%(b)(3—d) ]2 z=I/v2a(b),
=|"pFa=g | ~¢pV2e(d) (4.2
UN(z)=vN[v23a(b)z]/v(b), 4.9
and
(N (2)=A3SN[v2a(b)z]/2,.
P(b)(d—1) 2A9 kT
B= 1—_p—9 (4m) @D (d—1)/2] (4.3 In this wayz, U, andS are dimensionless variables and the
rescaled recursion relations have no explicit dependence on
In this case the flow equations simplify to the cutoffA. In particular, we obtain
oU oU aZU 2 (-
il UNtD(z)=—pd9 1 |n —f dz' &(z,2' 4.9
—r = Utz +in 1+ —s +S) (4.4 (2) 7 o (z,z')| (4.9
and for the rescaled binding potential, and
dS S S 39U -1 dz’[SNV(béz+2")+ SN (béz—2")]&(z,2'
—={z—=+-—=|1+—=+S| |, (4.5 S(N“)(z):fo 15 m) ( Nezz)
at dz = Jz Jz 2[odZ2'&(z2,2")

(4.10
where is as given in Eq(2.5 and recall=(3—d)/2.

With this notation we are interested in fixed-point pairsfor the stiffness contribution. Her& is given by
(U*(2),S*(2)) which satisfy gU*/ot=9S*/gt=0 along
with the boundary conditions of a hard wdlU* (z<0) &z2)=e 7" V"
=o] and U* and S* decaying to zero for large. The
appropriately rescaled fixed-point potentials of DL, dis-
cussed in Sec. Il B, in combination with the trivial stiffness
contributionS(z)=0 are clearly fixed points of the system.
In general, extending the procedure described by Lipowsk

(béz+2")+UMN(béz—2")]/2
Xe—z/z[s )(béz+2' )+ SN (béz—2")]12 (4.11)

In both recursion relation$4.9) and (4.10 we can replace
e upper limit of the integrals bly*z upon assuming a hard-

[29] we search for fixed points starting at smallvith the all potential.
local conditionsU* (z)~o1/2", S*(z)~0c,, where theo; _
are constants, and integrate forward. The tail§)5{z) and C. Phase diagram
S*(2) arising for largez can be determined by linearizing  For systems with purely short-ranged forces it suffices to
Egs.(4.4) and(4.5. Thus we find consider a bare potentigf]
[ SZ 2sz
S*(Z)=pSJ 47’ ex(—2'%2) 4.6 Oz=| WETFET 220 g
z z<0
and wherew is a measure of the deviation from the mean-field
wetting temperaturevec T — T, ands>0. Forz>0 addi-
(T+ 2N-1)! 1 tional terms with coefficients which vanish at the MF wetting
U*(z)=piHe, 4 Z)+ 2 (=11 27 temperature may be included and the coefficient ofeth&*?

term need not be set to unity but can be included as an
additional parameter in the model. These modifications will

— S*(2) (4.7 alter the precise location of phase boundaries but do not af-
fect the critical phenomena discussed below. For the bare

for large z, where He_(2) is the Hermite polynomial of position-dependent stiffness contribution we wiité]

order7—1 andpg,pq,p, are arbitrary constants. For fixed- _gsze 2% 750

point potentials in the strong-fluctuation regime we must S0 (z)= (4.13
choose initial parameters which yielg=0. A preliminary 0, z<0
study employing this procedure suggests that a family of
fixed-point pairs exist, parametrized hy,. However, we
find that the magnitude &* (z) is only non-negligible in the
region whereU* (z) is so large that it is effectively infinite,
i.e., forz—0. Thus typically one finds a fixed-point potential
picture indistinguishable from that of DL.

where the parametdr is the stiffness strengthRecall that
the form of S©(z<0) is arbitrary, given the hard-wall con-
tribution to the potential. Again, far>0 further terms such
ase”S?with a coefficient which vanishes @t=Tly may be
included[12] but these do not affect the essentlal physics.
The advantage of modeling(® andS® by Egs.(4.12 and
(4.13 is that the results of LF are recovered exactly in the
limit g—0.

For the calculations described below it is convenient to To determine the phase boundary we numerically iterate
follow the lead of LF and absorb the scale facta(d) and the potential and stiffness contribution using the recursion
P(b) into our functions. Thus, using a notation similar to thatrelations(4.9) and (4.10 with fixed b=2, starting with the
above but now for fixed>1, we define bare functiong4.12 and(4.13. In this way we find a two-

B. Dimensionless variables
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FIG. 2. Phase boundaries in the,§) plane for the dimension- FIG. 3. The three fixed-point potentiald§(z), U%(z), and
ally reduced bare potential and position-dependent stiffness contrld (z) for dimensiond=2.6 and rescaling factds=2 [using the
butions given by Eqgs(4.12 and (4.13, respectively, calculated dimensionless variable@.8)]. The corresponding stiffness contri-
with b=2. Recallw measures the deviation from the mean-field butions S*(z) which make up the fixed-point pairs are all zero
wetting temperaturWOcT\",\",FfT. The various phase boundaries are (within the precision of our numerical calculatignis the region
labeled by dimensiond and stiffness strengtf). The region above shown.
a boundary line corresponds to the “bound” phase while that below
re'p.resentsj the'unbound or delocalized interfac.e. Solid Iineg dgno]grw difficult to determine becausEJ§ has two relevant
c_r!tlcal Io_(:| while da§hed lines corrt_aspond to first-order I_ocu tric- perturbations. Thus only with starting parameters in the
ritical points separating the two regimes are shown by thick dots. plane w=w, on the line dividing critical and first-order

transitions do we eventually flow to the fixed point. The

dimensional separatrix which divides the three-dimensionagieneral topology of phase space for binding potentials in the
parameter spacens,q) into “bound” and “unbound” re-  strong-fluctuation regime is shown schematically in Fig. 4.
gions. The intersections of this separatrix with planes of Returning to the phase diagram we note that for fixed
fixed g are shown in Fig. 2 for botly=0 (corresponding to <0 no first-order transitions are found since the stiffness
LF) andq=2 for a range of dimensions. Unlike the earlier contribution strengthens rather than destabilizes the critical
study one finds that three fixed-point potentials are importantvetting transition. Similarly, recall fod=<2.41 that the fixed
in mapping out phase space. In additioip(z) andUg (z)  point U3 is not present so once again only critical wetting
[using the rescaling4.9)] the attractive manifold of the po- can occur. Hence id=2 it is the scaling index of the only
tential U3 (z) [corresponding to/% (1) of DL] is also rel-  relevant perturbation ati¥ (z) which is important for deter-
evant. For fixedd let w.(s,q) represent the separatrix. For mining the critical exponents, thus as with LF one fings
w<w, the attractive part oJ™) decays to zero eventually =(0.49=0.01) ! in excellent agreement with the exact
being mapped taJ# (z) which governs the completely un- valuev;=2 [22]. For largerd=2.41 first-order phase bound-
bound phase. Fow>w, the minimum of UN) becomes
deeper and deeper, representing the bound phase in whi
the interfacial separation remains finite. R@=w, the po-
tential is governed by one of the multicritical fixed points
U (z) or U5(z). Ford=2.6 these three fixed-point poten-
tials are shown in Fig. 3. Crossing the phase boundary fron P e o
theUZ to U§ region corresponds to critical wetting since the a
minimum of U(z) diverges continuously to infinity ad(z)
transforms continuously froy? to Uj (as assumed hap- .
pens when crossing between different RG fixed-point re- .-~
gions. Similarly the transition between tHg% andU% re-
gions is first-order wetting since the minimum &f(z)
jumps discontinuously from a finite value to infinity &z)
transforms continuously fror% to Ug . The potentiall
is easily found numerically since it is completely staffé
Hence if we start in any region of phase space satisfying
<w. we eventually iterate to the fixed point. The second g, 4. Schematic representation of the topology of phase space
fixed pointU} is a little more difficult to reach because it has when the three fixed-point potentialg? , U* , and U} are all
one relevantunstabl¢ perturbation so we must choose start- relevant. The separatrin, divides the regions of phase space cor-
ing parameters within that region of the plamwe=w, corre-  responding to bound and unbound interfaces while the thick line is
sponding to critical wetting. The final fixed point is particu- a line of tricritical points separating first-order and critical wetting.

_____

unbound
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aries are possible and ocdtior fixed g>0) for small values values. Clearly these quoted values of will depend to

of s. For larges the transition remains critical; a tricritical some extent on the approximations used above, for example,
point s, separates these two regions. It is found, as also seewn the choice of cutofi\. Furthermore, we have not at this

in Fig. 2, that at fixedd the region of the phase diagram in stage considered how significant a role the choice of fixed
which the interface remains bound increases WitWe also  b=2 plays(see below. However, given that, is around
note that ford=3, q=2.0 the value ofs at the tricritical  three times the value of current estimates ddiT), we can
point s;~2.83 (corresponding tas;~2.89 is much higher predict at this stage that the mean-field critical wetting tran-
than earlier estimates by FJ. sition is actually fluctuation-induced first order.

D. The stiffness instability in d=3 E. The rescaling parameterb and the infinitesimal

Recall that the FJ stiffness instability mechanism pro- rescaling limit

poses that ird=3 the bare critical wetting transition could Now we focus on how relevant the choice of rescaling
be driven fluctuation-induced first ordésee Sec. Il &€ We  factorb is for our quantitative results and provide some gen-
have seen above how this mechanism may arise in generatal results for how the location of the tricritical point varies
and in this subsection we provide a semiquantitative analysigith b, d, andg. Recall that the NFRG is an approximate

to locate more accurately the tricritical poiat in three di-  technique being exact only to first order in the binding po-
mensions for relevant temperatures. To this end we musgntial and position-dependent stiffness contribution. Thus
provide an estimate for the stiffness strengtin d=3. This  the NFRG scheme does not possess the semigroup property
is achieved by first noting from the analysis of FJ that, neswhich would ensure the results would be insensitive to the
glecting terms of O(Tw —T), V(I)~vye ?!+--- and choice ofb. Hence ideally we would like to consider the

A3 (1)~sykle 2+ . Furthermore, we observe that the infinitesimal rescaling limib=1", however, this is not pos-
simple relation sible using the numerical scheme described above. To over-
come this problem we have studied a range of rescaling pa-

S~ — 2020 (414 rameters 1.125b<5 numerically and extrapolate our

results to the infinitesimal limit.
appears to b_e generally_true at mean-fie_ld Ieve!. We shall not \ye focus here on the location of the tricritical pogtin
go into detail here but just note that this relation holds ex+hjs Jimit. Our first observation from this analysis is that the
actly for the |r_1tegral an_d simple crossing constraint chmcegt vanish ah—1 in a logarithmic manner. In particular, we
for the collective coordinaté [12,13, and for a more gen-  ing s« \/in b. This behavior is not surprising and is in fact
eralized crossing constraint definition bf[30]. From the  gqgential if the general scenario presented above is not to be
rescaling(4.8) the bare potentlaU.(o)(z) corresponds to the  fyngamentally changed. This is the case because the physi-
choice v,o=v(b) and hence using EqA.13 one should ¢4y interesting quantity is nag but w, which is related to
chooseq~2v(b)/Z,. Substituting forv(b) and recalling s, by
d=3 yields ,

st

Consequently, for rescaling factob=2 we have
g~3w(T) §§A2/2 [31], wherew(T) is the wetting parameter
defined earlier.

For the simple-cubic Ising modéappropriate to simula-
tions) w(T) has been estimated by Fisher and W24 to be
in the range 0.7€ w(T)<0.87 for 0.55<T/T.<1.0 while
the wetting temperature lies in the range 9B, /T,
<0.93. It is reasonable to assume a lattice cutof w/a
where a is the simple-cubic lattice spacing. Using this in
combination with estimates by Evans, Hoyle, and PEB&}
for the true bulk correlation length yield52§§~1.3 atT
=0.6T. increasing monotonically toA2§§~ 100 at T
=0.93T.. Thus sensible estimates of lie in the range
1.41<q<12.0. In particular, we find that the appropriate es-
timate forq increases with temperature so that, for example
we predict q(T=0.6T;)~1.41g(T=0.7T,)~2.46, q(T
=0.8T.)=~4.41, andq(T=0.9T.)~9.96 for the choiceb
=2. If we takeq=0.9, considerably lower than the above
est|ma2tes, we already_ fln_d _t_hat the tricritical po_mt s~S(q,€) Jinb
wy(=s;/4 Inb)~2.07, again significantly larger than earlier
predictions. Similarly fog=1.41 we findw;~2.49 while as
mentioned above fog=2.0, w;~2.89. As the value ofj where B=0.49 and §(qg,e) is a b-independent function
increases the tricritical point location also moves to highewhich we determine below. This reveals a quite significant

wheree=3—d. Thus if s; decayed to zero any faster than
O(yInb) asb—1 then the tricritical pointw,—0 in the
infinitesimal limit and so the fluctuation-induced first-order
wetting would be effectively lost. Likewise, #; decays to
zero more slowly tha®(+/In b) (or 5,40 asb—1) then in
the infinitesimal limitw,—0c and the bare critical wetting
transition would always be driven first order. Hence only
with the observed/In b vanishing canw, remain at a finite
nonzero value.

The remainingb dependence of ths, is found to be in
excellent agreement with a simple linear fit irb1/This is
shown in Fig. 5 whermg=0.9 for the range of dimensions
2.60<d<2.84. Results at higher dimensions are fully con-
sistent with this simple fit although fewer data have been
gathered due to increased calculation times. In general we
find that the location of the tricritical point can be written as

:
1- 4], (4.17)
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only approximate. However, using E@.20 close tod=3

200 (e=0) reveals that even if we legg vary by £50%, say,
1.75 then the resulting tricritical point locatios, varies by less
than = 14%. Hence even in the worst possible scenario for
o 190 both b andq we confidently predicto,>w(T) and thus ex-
—~ 1925 pect a first-order wetting transition.
a 1
EC, 1.00 V. DISCUSSION AND CONCLUSIONS
? 075 We have studied the effect of a position-dependent stiff-
ness contributiodA X (1) on the critical behavior related to an
0.50 7 . unbinding or wetting transition. In particular, we have intro-
0.25 | ] duced a modified functional renormalization group scheme
which allows a nonlinear analysis of effective Hamiltonian
0.00 ‘ ‘ . w models containing nonzem,(l). The resulting flow equa-
00 02 04 06 08 1.0 tions, which are exact at linear order &% (1) and the bind-
1/b ing potentialV(l), reveal a delicate coupling between the
flows of V and A3.
FIG. 5. Location of the tricritical poins, (rescaled byy/In b) In the strong-fluctuation regime the unbinding transition

plotted as a function of b/for g=0.9 and a range of dimensions. A is governed by three nontrivial fixed points leading to the
linear fit to each data set is given. Where error bars are not showpossibility of both critical and first-order transitions. Specifi-
the error lies within the size of the symbol. Note that upon extrapo-cally, first-order transitions become possible for spatial di-
lating we find that all the lines have a common point of intersectionmensionsgd= 2.41. This differs significantly from the case of

on thes;=0 axis at the location b~2.04. a position-independent stiffness coefficient when only criti-
cal transitions are found for atl.
effect uponw, in taking the infinitesimal limit since extrapo- In contrast to the earlier linear RG analysis, our approach
lating and using Eq(4.16) yields allows results on the location and order of the wetting tran-
sition to be determined with semiquantitative accurdbgse
w(b=1%)~0.46w,(b=2). (4.18 have typically been computed with rescaling fackor 2).

We have further considered the approach to the infinitesimal

Hence the results above fas, calculated usingp=2 are rescaling limit in a numerical fashion in order to guantita-
predicted to be reduced to a little under half their given val-tively understand the effect of this parameter on our results.
ues, in the infinitesimal limit. Nevertheless the resulting tri-In each case, for temperatures €.6,,/T.<0.93 appropri-
critical values are still comfortably larger than the corre-ate for comparison with simulations, we confidently predict
sponding predictions forw(T) so that our conclusions thatind=3 the bare critical wetting transition is fluctuation-
remain unaltered. However, this large change in going fromnduced first order. These results are shown to be robust
b=2 to b=1 does demonstrate how careful we must be inunder large variations in the stiffness strength.
extracting quantitative results using the NFRG. Recall that the linear RG analysis of Jin and Fisfi]

We conclude by providing some details of the function predicted that the first-order transitionds= 3 would be very

S(q, €) introduced in Eq(4.17. From our numerical studies W@k and thus may be extremely difficult to observe in simu-
we find that this function can most easily be written in thelations. We have not addressed the issue of the strength of

form the transition in this paper but this topic should be consid-
ered in future work. However, we note that because of the
S(9,€)=q"19f,(e), (4.19  drifting nature of the fixed points in the approachde 3 it
seems likely that in this limit the first-order transition will
where f,(€) and f,(e) are dimension-dependent functions occur only for very large values of the interface separalion

with f, given by (with | increasing continuously up to that poinThus we
also anticipate a weakly first-order transition. A more ana-
f1(€)~0.206+ 0.50¢, (4.20 lytical approach would be welcome but since this should be
based on the coupled nonlinear flow equations significant
while f, can be written as a simple expansionein progress may prove difficult.
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